خيام
بازگشت غرور آفرین و پیروزمندانه ی شما را به تمامی مدیران سایت تبریک می گوییم
خيام
بازگشت غرور آفرین و پیروزمندانه ی شما را به تمامی مدیران سایت تبریک می گوییم
خيام
Would you like to react to this message? Create an account in a few clicks or log in to continue.


دانشجويان دانشگاه غير انتفاعي خيام مشهد
 
HomePortalSearchLatest imagesRegisterLog in

 

 هوش مصنوعی (Artificial Intelligence) چیست ؟

Go down 
AuthorMessage
Mahdi Amadeh
کاربر حرفه ای
کاربر حرفه ای
Mahdi Amadeh


تعداد پستها : 226
Join date : 2009-12-27
Age : 36

هوش مصنوعی (Artificial Intelligence) چیست ؟ Empty
PostSubject: هوش مصنوعی (Artificial Intelligence) چیست ؟   هوش مصنوعی (Artificial Intelligence) چیست ؟ Icon_minitime4/1/2010, 09:49

هوش مصنوعی (Artificial Intelligence)



چکیده
مباحث هوش مصنوعی پیش از بوجود آمدن علوم الکترونیک، توسط فلاسفه و ریاضی دانانی نظیر بول (Boole) که اقدام به ارائه قوانین و نظریه‌هایی در باب منطق نمودند، مطرح شده بود. در سال ۱۹۴۳، با اختراع رایانه‌های الکترونیکی، هوش مصنوعی، دانشمندان را به چالشی بزرگ فراخواند. بنظر می‌رسید، فناوری در نهایت قادر به شبیه‌سازی رفتارهای هوشمندانه خواهد بود.
هوش مصنوعی مجموعه ای از روشها است که رایانه را وا می دارد از اطلاعاتی که در اختیار دارد بهتر استفاده کند و همه قوانین دانش رایانه در هوش مصنوعی هم کاربرد دارد . زمان آغاز مساله هوش مصنوعی پس از جنگ جهانی دوم می باشد. آن زمان نور برت وینر(Norbert Wiener) با توجه به مسائل سیبرنتیک زمینه ای را برای پیشرفت هوش مصنوعی بوجود آورد. در سال 1950 آلن تورینگ (Alan turing) آزمایشی مبنی بر اینکه آیا ماشین قادر است با فرآیندهای مغز انسان رقابت نماید مطرح کرد و در سال 1956 در کالج دورت مونت (Dort mount) جلسه ای برگزار کرد که تحقیقات وسیع بر هوش مصنوعی را تشویق می نمود و به همین طریق دهه 1960 دهه توسعه و پیشرفت هوش مصنوعی شناخته می شود. نام هوش مصنوعی در سال ۱۹۶۵ میلادی به عنوان یک دانش جدید ابداع گردید.


مقدمه
نام هوش مصنوعی در سال ۱۹۶۵ میلادی به عنوان یک دانش جدید ابداع گردید. البته فعالیت درزمینه این علم از سال ۱۹۶۰ میلادی شروع شده‌بود. بیشتر کارهای پژوهشی اولیه در هوش مصنوعی بر روی انجام ماشینی بازی‌ها و نیز اثبات قضیه‌های ریاضی با کمک رایانه‌ها بود. در آغاز چنین به نظر می‌آمد که رایانه‌ها قادر خواهند بود چنین اموری را تنها با بهره گرفتن از تعداد بسیار زیادی کشف و جستجو برای مسیرهای حل مسئله و سپس انتخاب بهترین آن‌ها به انجام رسانند.با وجود مخالفت گروهی از متفکرین با هوش مصنوعی که با دیده تردید به کارآمدی آن می‌نگریستند تنها پس از چهار دهه، شاهد تولد ماشینهای شطرنج باز و دیگر سامانه‌های هوشمند در صنایع گوناگون هستیم.اين اصطلاح(هوش مصنوعی) برای اولين بار توسط جان مكارتی (John Mccorthy) كه از آن بعنوان پدر «علم و دانش توليد ماشينهای هوشمند» یاد می‌شود استفاده شد. با اين عنوان می‌توان به هويت هوشمند يک ابزار مصنوعی اشاره كرد. (ساختهٔ دست بشر، غير طبيعی، مصنوعی) حال آنكه AI به عنوان يك اصطلاح عمومی پذيرفته شده كه شامل محاسبات هوشمندانه و تركيبی (مركب از مواد مصنوعی) می‌باشد.از اصطلاح strong and weak AI می‌توان تا حدودی برای معرفی رده‌بندی سيستم‌ها استفاده كرد. AI ها در رشته‌های مشتركی چون علم كامپيوتر، روانشناسی و فلسفه مورد مطالعه قرار می‌گيرند، كه مطابق آن باعث ايجاد يک رفتار هوشمندانه، يادگيری و سازش می‌شود و معمولاً نوع پيشرفتهٔ آن در ماشينها و كامپيوترها استفاده‌ می‌شود.
محققين هوش مصنوعی علاقه‌مند به تولید ماشينی هستند كه دستورات مورد نياز را به صورت هوشمندانه انجام دهد. به عنوان مثال قابلیت كنترل، برنامه‌ريزی و زمان‌بندی، توانايی تشخيص جواب به سوال مصرف كننده،‌دست نويس‌ها، زبان شناسی، سخنرانی و شناسايی چهره را داشته باشد. مطالعه بر روی يک AI دارد به يک رشتهٔ مهندسی تبديل می‌شود كه كانون مشروط است بر حل مشكلات زندگی واقعی، علم معدن كاری، نرم افزارهای كاربردی، استراتژی بازيها مثل بازی شطرنج و بازيهای ويدئويی يكی از بزرگترين مشكلات (سختی‌ها) با AIها، قوهٔ درک آنها است. تاحدی دستگاههای توليد‌شده می‌توانند شگفت‌انگيز باشند، اما كارشناسان هوش مصنوعی ادعا می‌كنند كه ماشينهای هوشمند ساخته‌شده دارای درک واقعی و حقيقی نيستند.[1]

رئوس مطالب :
۱- تعریف و طبیعت هوش مصنوعی
2= فلسفهٔ هوش مصنوعی
3= مدیریّت پیچیدگی
4= پردازش زبان‌های طبیعی
5= سیستم‌های خبره
6= عامل‌های هوشمند
7= افق های هوش مصنوعی
8= يادگيري ماشين (Machine Learning)
9- هوش ازدحامی ((Swarm Intelligence

تعریف و طبیعت هوش مصنوعی
هنوز تعریف دقیقی که مورد قبول همهٔ دانشمندان این علم باشد برای هوش مصنوعی ارائه نشده‌است، و این امر، به هیچ وجه مایهٔ تعجّب نیست. چرا که مقولهٔ مادر و اساسی‌تر از آن، یعنی خود هوش هم هنوز بطور همه‌جانبه و فراگیر تن به تعریف نداده‌است. در واقع، می‌توان نسل‌هایی از دانشمندان را سراغ گرفت که تمام دوران زندگی خود را صرف مطالعه و تلاش در راه یافتن جوابی به این سؤال عمده نموده‌اند که: هوش چیست؟ اما اکثر تعریف‌هایی که در این زمینه ارایه شده‌اند بر پایه یکی از ۴ باور زیر قرار می‌گیرند:
1. سیستم‌هایی که به طور منطقی فکر می‌کنند
2. سیستم‌هایی که به طور منطقی عمل می‌کنند
3. سیستم‌هایی که مانند انسان فکر می‌کنند
4. سیستم‌هایی که مانند انسان عمل می‌کنند[1]
شاید بتوان هوش مصنوعی را این گونه توصیف کرد:«هوش مصنوعی عبارت است از مطالعه این که چگونه کامپیوترها را می‌توان وادار به کارهایی کرد که در حال حاضر انسان‌ها آنها رابهتر انجام می‌دهند»[1]

فلسفهٔ هوش مصنوعی
بطور کلی ماهیت وجودی هوش به مفهوم جمع آوری اطلاعات, استقرا و تحلیل تجربیات به منظور رسیدن به دانش و یا ارایه تصمیم میباشد. در واقع هوش به مفهوم به کارگیری تجربه به منظور حل مسایل دریافت شده تلقی میشود. هوش مصنوعی علم و مهندسی ایجاد ماشینهایی با هوش با به کارگیری از کامپیوتر و الگوگیری از درک هوش انسانی و یا حیوانی و نهایتا دستیابی به مکانیزم هوش مصنوعی در سطح هوش انسانی میباشد.
در مقایسه هوش مصنوعی با هوش انسانی می‌توان گفت که انسان قادر به مشاهده و تجزیه و تحلیل مسایل در جهت قضاوت و اخذ تصمیم میباشد در حالی که هوش مصنوعی مبتنی بر قوانین و رویه‌هایی از قبل تعبیه شده بر روی کامپیوتر میباشد. در نتیجه علی رغم وجود کامپیوترهای بسیار کارا و قوی در عصر حاضر ما هنوز قادر به پیاده کردن هوشی نزدیک به هوش انسان در ایجاد هوشهای مصنوعی نبوده‌ایم[3].
بطور کلّی، هوش مصنوعی را می‌توان از زوایای متفاوتی مورد بررسی و مطالعه قرار داد. مابین هوش مصنوعی به عنوان یک هدف، هوش مصنوعی به عنوان یک رشته تحصیلی دانشگاهی، و یا هوش مصنوعی به عنوان مجموعهٔ فنون و راه کارهایی که توسط مراکز علمی مختلف و صنایع گوناگون تنظیم و توسعه یافته‌است باید تفاوت قائل بود.
آيا كامپيوتر مي‌تواند فكر كند؟
يكي از جالب‌ترين و هيجان‌انگيزترين پرسش‌هايي كه تاكنون تاريخ فلسفه به خود ديده، پرسشي است كه آلن تورينگ، فيلسوف و رياضيدان انگليسي در سال 1950 طي مقاله‌اي به نام Computing Machinery and Intelligenceيا <ماشين محاسباتي و هوشمندي> مطرح كرد. او پرسيد: <آيا ماشين مي‌تواند فكر كند؟> و براي اين‌كه ذهن مخاطب را از پريشاني درباره ماهيت اين ماشين برهاند، توضيح داد كه منظور او از ماشين، يك كامپيوتر است؛ ماشيني كه قادر به انجام محاسبات نرم‌افزاري است. به اين ترتيب براي اولين بار اين پرسش در ذهن نوع بشر پديد آمد كه:
<آيا كامپيوتر مي‌تواند فكر كند؟>
خود تورينگ نتوانست پاسخ قطعي اين پرسش را پيدا كند، اما براي يافتن پاسخ مناسب در آينده، يك راهبرد خلاقانه پيشنهاد كرد. او آزموني طراحي كرد كه خود آن را <بازي تقليد> ناميد. تورينگ پرسيد: <آيا يك ماشين، يعني يك كامپيوتر، مي‌تواند آزمون تقليد را با موفقيت پشت سربگذارد؟> آيا يك كامپيوتر مي‌تواند با يك انسان چنان گفت‌وگو كند كه او فريب بخورد و تصور كند در حال گفت‌وگو با يك انسان است؟
او آزمون بازي تقليد را چنين شرح داد: يك پرسشگر - يك انسان - همزمان در حال گفت‌وگو با دو نفر است. هر يك از اين دو نفر در اتاق‌هاي جداگانه‌اي قرارگرفته‌اند و پرسشگر نمي‌تواند هيچ‌يك از آن‌ها را ببيند. يكي از اين دو نفر يك انسان است و ديگري يك ماشين؛ يعني يك كامپيوتر. پرسشگر بايد با اين دو نفر شروع به گفت‌وگو كند و بكوشد بفهمد كدام‌يك از اين دو

انسان است و كدام‌يك ماشين. اگر كامپيوتر بتواند طوري جواب دهد كه پرسشگر نتواند انسان را از ماشين تميز دهد، آنگاه مي‌توان ادعا كرد كه اين ماشين هوشمند است.
تورينگ براي آسان‌تركردن شرايط اين آزمون و پرهيز از پيچيدگي‌هاي اضافي، آن را به محاوره‌اي متني و روي كاغذ محدود كرد تا مجبور به درگير شدن با مسائل انحرافي مانند تبديل متن به گفتار شفاهي و تنظيم تُن صدا و لهجه نباشيم. او همچنين براساس يك سري محاسبات، پيش‌بيني كرد كه پنجاه سال بعد، يعني در سال 2000 انسان قادر خواهد بود كامپيوترهايي بسازد كه در يك گفت‌وگوي پنج دقيقه‌اي، فقط هفتاد درصد پرسشگرها بتوانند كشف كنند كه در حال گفت‌وگو با يك انسان هستند يا يك ماشين. او برخورداري از يك ميليارد بيت حافظه (125 ميليون بايت - حدود 120 مگابايت) را يكي از مشخصه‌هاي اصلي اين كامپيوتر دانست.
تورينگ همچنين در اين مقاله يك سري استدلال‌هاي مخالف با نظريه و آزمون خود را مطرح كرد و كوشيد به آن‌ها پاسخ دهد. نخست، تصور اين‌كه ماشين‌هاي هوشمندي ساخته شوند كه بتوانند فكر كنند، وحشتناك است. تورينگ در پاسخ مي‌گويد: اين نكته‌اي انحرافي است؛ زيرا بحث اصلي او بايدها و نبايدها نيست، بلكه بحث درباره ممكن‌ها است. ديگر اين‌كه، ادعا مي‌شود محدوديت‌هايي درباره نوع پرسش‌هايي كه مي‌توان از كامپيوتر پرسيد وجود دارد؛ زيرا كامپيوتر از منطق خاصي پيروي مي‌كند. اما تورينگ در پاسخ مي‌گويد: خود انسان هنگام گفت‌وگو پرغلط ظاهر مي‌شود و نمي‌توان گفتار هر انساني را لزوماً منطقي كرد. او پيش‌بيني كرد كه منشا اصلي هوشمندي ماشينِ فرضي او، حافظه بسيار زياد و سريعي است كه يك كامپيوتر مي‌تواند داشته باشد. بنابراين، از نگاه تورينگ، ماشيني همچون كامپيوتر Deep Blue كه كاسپاروف، قهرمان شطرنج را شكست داد، مي‌توان يك ماشين هوشمند تلقي كرد.[4]
شاخه‌هاي علم هوش مصنوعي‌
امروزه دانش مدرن هوش مصنوعي به دو دسته اصلي تقسيم مي‌شود: يكي (هوش مصنوعي سمبوليك يا نمادين) (Symbolic AI) و ديگري هوش غيرسمبوليك كه پيوندگرا (Connection AI) نيز ناميده مي‌شود.
هوش مصنوعي سمبوليك از رهيافتي مبتني بر محاسبات آماري پيروي مي‌كند و اغلب تحت عنوان (يادگيري ماشين) يا (Machine Learning) طبقه‌بندي مي‌شود. هوش سمبوليك مي‌كوشد سيستم و قواعد آن را در قالب سمبول‌ها بيان كند و با نگاشت اطلا‌عات به سمبول‌ها و قوانين به حل مسئله بپردازد. در ميان معروف‌ترين شاخه‌هاي هوش مصنوعي سمبوليك مي‌توان به سيستم‌هاي خبره (Expert Systems) و شبكه‌هاي Bayesian اشاره كرد.
يك سيستم خبره مي‌تواند حجم عظيمي از داده‌ها را پردازش نمايد و بر اساس تكنيك‌هاي آماري، نتايج دقيقي را تهيه كند. شبكه‌هاي Bayesian يك تكنيك محاسباتي براي ايجاد ساختارهاي اطلاعاتي و تهيه استنتاج‌هاي منطقي از روي اطلاعاتي است كه به كمك روش‌هاي آمار و احتمال به دست‌ آمده‌اند. بنابراين در هوش سمبوليك، منظور از <يادگيري ماشين> استفاده از الگوريتم‌هاي تشخيص الگوها، تحليل و طبقه‌بندي اطلاعات است.
اما هوش پيوندگرا متكي بر يك منطق استقرايي است و از رهيافت <آموزش/ بهبود سيستم از طريق تكرار> بهره‌ مي‌گيرد. اين آموزش‌ها نه بر اساس نتايج و تحليل‌هاي دقيق آماري، بلكه مبتني بر شيوه آزمون و خطا و <يادگيري از راه تجربه> است. در هوش مصنوعي پيوندگرا، قواعد از ابتدا در اختيار سيستم قرار نمي‌گيرد، بلكه سيستم از طريق تجربه، خودش قوانين را استخراج مي‌كند. متدهاي ايجاد شبكه‌هاي عصبي (Neural Networks) و نيز به‌كارگيري منطق فازي (Fuzzy Logic) در اين دسته قرار مي‌گيرند.
براي درك بهتر تفاوت ميان اين دو شيوه به يك مثال توجه كنيد. فرض كنيد مي‌خواهيم يك سيستم OCR بسازيم. سيستم OCR نرم افزاري است كه پس از اسكن كردن يك تكه نوشته روي كاغذ مي‌تواند متن روي آن را استخراج كند و به كاراكترهاي متني تبديل نمايد.
بديهي است كه چنين نرم‌افزاري به نوعي هوشمندي نياز دارد. اين هوشمندي را با دو رهيافت متفاوت مي‌توان فراهم كرد. اگر از روش سمبوليك استفاده كنيم، قاعدتاً بايد الگوي هندسي تمام حروف و اعداد را در حالت‌هاي مختلف در بانك اطلاعاتي سيستم تعريف كنيم و سپس متن اسكن شده را با اين الگوها مقايسه كنيم تا بتوانيم متن را استخراج نماييم. در اينجا الگوهاي حرفي-‌عددي يا همان سمبول‌ها پايه و اساس هوشمندي سيستم را تشكيل مي‌دهند. روش دوم يا متد <پيوندگرا> اين است كه يك سيستم هوشمند غيرسمبوليك درست كنيم و متن‌هاي متعددي را يك به يك به آن بدهيم تا آرام آرام آموزش ببيند و سيستم را بهينه كند. در اينجا سيستم هوشمند مي‌تواند مثلا‌ً يك شبكه عصبي يا مدل مخفي ماركوف باشد. در اين شيوه سمبول‌ها پايه هوشمندي نيستند، بلكه فعاليت‌هاي سلسله اعصاب يك شبكه و چگونگي پيوند ميان آن‌ها مبناي هوشمندي را تشكيل مي‌دهند.

مدیریت پیچیدگی
ایجاد و ابداع فنون و تکنیک‌های لازم برای مدیریّت پیچیدگی را باید به عنوان هستهٔ بنیادین تلاش‌های علمی و پژوهشی گذشته، حال، و آینده، در تمامی زمینه‌های علوم رایانه، و به ویژه، در هوش مصنوعی معرّفی کرد. شیوه‌ها و تکنیک‌های هوش مصنوعی، در واقع، برای حلّ آن دسته از مسائل به وجود آمده‌است که به طور سهل و آسان توسط برنامه‌نویسی تابعی (Functional programming)، یا شیوه‌های ریاضی قابل حلّ نبوده‌اند.در بسیاری از موارد، با پوشانیدن و پنهان ساختن جزئیّات فاقد اهمّیّت است که بر پیچیدگی فائق می‌آییم، و می‌توانیم بر روی بخش‌هایی از مسئله متمرکز شویم که مهم‌تر است. تلاش اصلی، در واقع، ایجاد و دستیابی به لایه‌ها و ترازهای بالاتر و بالاتر تجرید را نشانه می‌رود، تا آنجا که، سرانجام برنامه‌های کامپوتری درست در همان سطحی کار خواهند کرد که خود انسان‌ها به کار مشغولند. به یاری پژوهش‌های گسترده دانشمندان علوم مرتبط، هوش مصنوعی از آغاز پیدایش تاکنون راه بسیاری پیموده‌است. در این راستا، تحقیقاتی که بر روی توانایی آموختن زبانها انجام گرفت و همچنین درک عمیق از احساسات، دانشمندان را در پیشبرد این علم، یاری کرده‌است. یکی از اهداف متخصصین، تولید ماشینهایی است که دارای احساسات بوده و دست کم نسبت به وجود خود و احساسات خود آگاه باشند. این ماشین باید توانایی تعمیم تجربیات قدیمی خود در شرایط مشابه جدید را داشته و به این ترتیب اقدام به گسترش دامنه دانش و تجربیاتش کند.
برای نمونه به رباتی هوشمند بیاندیشید که بتواند اعضای بدن خود را به حرکت درآورد، او نسبت به این حرکت خود آگاه بوده و با سعی و خطا، دامنه حرکت خود را گسترش می‌دهد، و با هر حرکت موفقیت آمیز یا اشتباه، دامنه تجربیات خود را وسعت بخشیده و سر انجام راه رفته و یا حتی می‌دود و یا به روشی برای جابجا شدن، دست می‌یابد، که سازندگانش، برای او، متصور نبوده‌اند.هر چند مثال ما در تولید ماشینهای هوشمند، کمی آرمانی است، ولی به هیچ عنوان دور از دسترس نیست. دانشمندان، عموماً برای تولید چنین ماشینهایی، از تنها مدلی که در طبیعت وجود دارد، یعنی توانایی یادگیری در موجودات زنده بخصوص انسان، بهره می‌برند.آنها بدنبال ساخت ماشینی مقلد هستند، که بتواند با شبیه‌سازی رفتارهای میلیونها یاخته مغز انسان، همچون یک موجود متفکر به اندیشیدن بپردازد.
هوش مصنوعی که همواره هدف نهایی دانش رایانه بوده‌است، اکنون در خدمت توسعه علوم رایانه نیز است. زبانهای برنامه نویسی پیشرفته، که توسعه ابزارهای هوشمند را ممکن می‌سازند، پایگاههای داده‌ای پیشرفته، موتورهای جستجو، و بسیاری نرم‌افزارها و ماشینها از نتایج پژوهش‌های هوش مصنوعی بهره می‌برند.
سیستمی که عاقلانه فکر کند. سامانه‌ای عاقل است که بتواند کارها را درست انجام دهد. در تولید این سیستم‌ها نحوه اندیشیدن انسان مد نظر نیست. این سیستم‌ها متکی به قوانین و منطقی هستند که پایه تفکر آنها را تشکیل داده و آنها را قادر به استنتاج و تصمیم گیری می‌نماید. آنها با وجودی که مانند انسان نمی‌اندیشند، تصمیماتی عاقلانه گرفته و اشتباه نمی‌کنند. این ماشینها لزوما درکی از احساسات ندارند. هم اکنون از این سیستم‌ها در تولید عامل‌ها در نرم افزارهای رایانه‌ای، بهره گیری می‌شود. عامل تنها مشاهده کرده و سپس عمل می‌کند..[4]

پردازش زبان های طبیعیNLP))
پردازش‌ زبان‌هاي‌ طبيعي‌ بعنوان‌ زيرمجموعه‌اي‌ از هوش‌ مصنوعي‌،مي‌تواند توصيه‌ها و بيانات‌ را با استفاده‌ از زباني‌ كه‌ شما به‌ طور طبيعي‌ درمكالمات‌ روزمره‌ بكار مي‌بريد، بفهمد و مورد پردازش‌ قرار دهد. به‌ طوركلي‌ نحوه‌ كار اين‌ شاخه‌ از هوش‌ مصنوعي‌ اين‌ است‌ كه‌ زبانهاي‌ طبيعي‌انسان‌ را تقليد مي‌كند. در اين‌ ميان‌، پيچيدگي‌ انسان‌ از بعد روانشناسي‌ برروي‌ ارتباط متعامل‌ تاثير مي‌گذارد.در پردازش‌ زبانهاي‌ طبيعي‌، انسان‌ و كامپيوتر ارتباطي‌ كاملا نزديك‌با يكديگر دارند. كامپيوتراز لحاظ رواني در مغز انسان جاي داده مي شود. بدين ترتيب يك سيستم خلاق شكل مي گيرد كه انسان نقش سازمان دهنده اصلي آن را برعهاده دارد. اگر چه هنوز موانع روانشناختي و زبانشناختي بسياري بر سر راه سبستمهاي محاوره اي وجود دارد. اما چشم اندهزهاي پيشرفت آنها يقيناً نويدبخش است. در حقيقت، توقعات يكسان از محاوره انسان- ماشني و محاوره انسان- انسان، معقول نيست.
سيستم‌هاي‌ خبره‌، برنامه‌هاي‌ كاميپوتري‌ هوشمندي‌ هستند كه‌ دانش‌و روشهاي‌ استنباط و استنتاج‌ را بكار مي‌گيرند تا مسائلي‌ را حل‌ كنند كه‌براي‌ حل‌ آن‌ها به‌ مهارت‌ انساني‌ نياز است‌.
سيستم‌هاي‌ خبره‌ كاربر را قادر به‌ مشاوره‌ با سيستم‌هاي‌ كامپيوتري‌در مورد يك‌ مسئله‌ و يافتن‌ دلايل‌ بروز مسئله‌ و راه‌حل‌هاي‌ آن‌ مي‌كند.در اين‌ حالات‌ مجموعه‌ سخت‌افزار و نرم‌افزار تشكيل‌ دهنده‌ سيستم‌خبره‌، مانند فرد خبره‌ اقدام‌ به‌ طرح‌ سئوالات‌ مختلف‌ و دريافت‌پاسخ‌هاي‌ كاربر، مراجعه‌ به‌ پايگاه‌ دانش‌ (تجربيات‌ قبلي‌) و استفاده‌ ازيك‌ روش‌ منطقي‌ براي‌ نتيجه‌گيري‌ و نهايتا ارائه‌ راه‌حل‌ مي‌نمايد.همچنين‌ سيستم‌ خبره‌ قادر به‌ شرح‌ مراحل‌ نتيجه‌گيري‌ خود تا رسيدن‌ به‌هدف‌)چگونگي‌ نتيجه‌گيري‌(و دليل‌ مطرح‌ شدن‌ يك‌ سئوال‌ اجرايي‌)روش‌ حركت‌ تا رسيدن‌ به‌ هدف‌(خواهد بود.

سيستم‌هاي‌ خبره
‌ برخلاف‌ سيستم‌هاي‌ اطلاعاتي‌ كه‌ بر روي‌ داده‌ها(Data) عمل‌ مي‌كنند، بر دانش‌ (Knowledge) متمركز شده‌ است‌. همچنين‌ دريك‌ فرآيند نتيجه‌گيري‌، قادر به‌ استفاده‌ از انواع‌ مختلف‌ داده‌ها )عددي‌ Digital، نمادي‌ Symbolic و مقايسه‌اي‌ Analoge( مي‌باشند. يكي‌ ديگر ازمشخصات‌ اين‌ سيستم‌ها استفاده‌ از روشهاي‌ ابتكاري‌ (Heuristic) به‌ جاي‌روشهاي‌ الگوريتمي‌ مي‌باشد. اين‌ توانايي‌ باعث‌ قرار گرفتن‌ محدودوسيعي‌ از كاربردها در برد عملياتي‌ سيستم‌هاي‌ خبره‌ مي‌شود. فرآيندنتيجه‌گيري‌ در سيستم‌هاي‌ خبره‌ بر روشهاي‌ استقرايي‌ و قياسي‌ پايه‌گذاري‌شده‌ است‌. از طرف‌ ديگر اين‌ سيستم‌ها مي‌توانند دلايل‌ خود در رسيدن‌به‌ يك‌ نتيجه‌گيري‌ خاص‌ و يا جهت‌ و مسير حركت‌ خود به‌ سوي‌ هدف‌را شرح‌ دهند. با توجه‌ به‌ توانايي‌ اين‌ سيستم‌ها در كار در شرايط فقدان‌اطلاعات‌ كامل‌ و يا درجات‌ مختلف‌ اطمينان‌ در پاسخ‌ به‌ سئوالات‌ مطرح‌شده‌، سيستم‌هاي‌ خبره‌ نماد مناسبي‌ براي‌ كار در شرايط عدم‌ اطمينان‌(Uncertainty) و يا محيطهاي‌ چند وجهي‌ مي‌باشند.
مزاياي‌ سيستم‌هاي‌ خبره :
مزاياي‌ سيستم‌هاي‌ خبره‌ را مي‌توان‌ به‌ صورت‌ زير دسته‌بندي‌ كرد:
1-افزايش قابليت‌ دسترسي‌: تجربيات‌ بسياري‌ از طريق‌ كامپيوتر دراختيار قرار مي‌گيرد و به‌ طور ساده‌تر مي‌توان‌ گفت‌ يك‌ سيستم‌ خبره‌،توليد انبوه‌ تجربيات‌ است‌.
2-كاهش‌هزينه‌: هزينه‌كسب‌تجربه‌براي‌كاربربه‌طورزيادي‌كاهش‌مي‌يابد.
3-كاهش‌ خطر: سيستم‌ خبره‌ مي‌تواند در محيطهايي‌ كه‌ ممكن‌ است‌براي‌ انسان‌ سخت‌ و خطرناك‌ باشد نيز بكار رود.
4-دائمي‌ بودن‌: سيستم‌هاي‌ خبره‌ دائمي‌ و پايدار هستند. بعبارتي‌ مانندانسان‌ها نمي‌ميرند و فنا ناپذيرند.
5-تجربيات‌ چندگانه‌: يك‌ سيستم‌ خبره‌ مي‌تواند مجموع‌ تجربيات‌ وآگاهي‌هاي‌ چندين‌ فرد خبره‌ باشد.
6-افزايش‌ قابليت‌ اطمينان‌: سيستم‌هاي‌ خبره‌ هيچ‌ وقت‌ خسته‌ وبيمار نمي‌شوند، اعتصاب‌ نمي‌كنند و يا عليه‌ مديرشان‌ توطئه‌ نمي‌كنند، درصورتي‌ كه‌ اغلب‌ در افراد خبره‌ چنين‌ حالاتي‌ پديد مي‌آيد.
7-قدرت‌ تبيين‌ (Explanation): يك‌ سيستم‌ خبره‌ مي‌تواند مسير و مراحل‌استدلالي‌ منتهي‌ شده‌ به‌ نتيجه‌گيري‌ را تشريح‌ نمايد. اما افراد خبره‌ اغلب‌اوقات‌ بدلايل‌ مختلف‌ (خستگي‌، عدم‌ تمايل‌ و…) نمي‌توانند اين‌ عمل‌ رادر زمانهاي‌ تصميم‌گيري‌ انجام‌ دهند. اين‌ قابليت‌، اطمينان‌ شما را در موردصحيح‌ بودن‌ تصميم‌گيري‌ افزايش‌ مي‌دهد.
8-پاسخ‌دهي‌سريع‌: سيستم‌هاي‌خبره‌،سريع‌ودراسرع‌وقت‌جواب‌مي‌دهند.
9-پاسخ‌دهي‌ در همه‌ حالات‌: در مواقع‌ اضطراري‌ و مورد نياز،ممكن‌ است‌ يك‌ فرد خبره‌ بخاطر فشار روحي‌ و يا عوامل‌ ديگر، صحيح‌تصميم‌گيري‌ نكند ولي‌ سيستم‌ خبره‌ اين‌ معايب‌ را ندارد.
10-پايگاه‌ تجربه‌: سيستم‌ خبره‌ مي‌تواند همانند يك‌ پايگاه‌ تجربه‌عمل‌ كند وانبوهي‌ از تجربيات‌ را در دسترس‌ قرار دهد
11-آموزش‌ كاربر: سيستم‌ خبره‌ مي‌تواند همانند يك‌ خودآموز هوش‌(Intelligent Tutor) عمل‌ كند. بدين‌ صورت‌ كه‌ مثالهايي‌ را به‌ سيستم‌ خبره‌مي‌دهند و روش‌ استدلال‌ سيستم‌ را از آن‌ مي‌خواهند.
12-سهولت‌ انتقال‌ دانش‌: يكي‌ از مهمترين‌ مزاياي‌ سيستم‌ خبره‌،سهولت‌ انتقال‌ آن‌ به‌ مكان‌هاي‌ جغرافيايي‌ گوناگون‌ است‌. اين‌ امر براي‌توسعه‌كشورهايي‌كه‌ استطاعت‌ خريد دانش‌ متخصصان‌راندارند،مهم‌است‌[3]

.عامل‌های هوشمند
عامل‌ها (Agents) قادر به شناسایی الگوها، و تصمیم گیری بر اساس قوانین فکر کردن خود می‌باشند. قوانین و چگونگی فکر کردن هر عامل در راستای دستیابی به هدفش، تعریف می‌شود. این سیستم‌ها بر اساس قوانین خاص خود فکر کرده و کار خودرا به درستی انجام می‌دهند. پس عاقلانه رفتار می‌کنند، هر چند الزاما مانند انسان فکر نمی‌کنند

.افقهای هوش مصنوعی
در 1943(،Mcclutchروانشناس، فيلسوف و شاعر) و Pitts) رياضيدان( طی مقالهای، ديدههای آن روزگار درباره محاسبات، منطق و روانشناسی عصبی را تركيب كردند. ايده اصلی آن مقاله چگونگی انجام اعمال منطقی به وسيله اجزای ساده شبكه عصبی بود. اجزای بسيار ساده (نورونها) اين شبكه فقط از اين طريق سيگنال های تحريك (exitory) و توقيف (inhibitory) با هم درتماس بودند. اين همان چيزی بود كه بعدها دانشمندان كامپيوتر آن را مدارهای (And) و (OR) ناميدند و طراحی اولين كامپيوتر در 1947 توسط فون نيومان عميقاً از آن الهام میگرفت.
امروز پس از گذشته نيمقرن از كار Mcclutch و Pitts شايد بتوان گفت كه اين كار الهام بخش گرايشی كاملاً پويا و نوين در هوش مصنوعی است.
پيوندگرايی (Connectionism) هوشمندی را تنها حاصل كار موازی و همزمان و در عين حال تعامل تعداد بسيار
زيادی اجزای كاملاً ساده به هم مرتبط میداند.
شبكههای عصبی كه از مدل شبكه عصبی ذهن انسان الهام گرفتهاند امروزه دارای كاربردهای كاملاً علمی و گسترده تكنولوژيك شدهاند و كاربرد آن در زمينههای متنوعی مانند سيستمهای كنترلی، رباتيك، تشخيص متون، پردازش تصوير،… مورد بررسی قرار گرفته است.
علاوه بر اين كار بر روی توسعه سيستمهای هوشمند با الهام از طبيعت (هوشمندیهای ـ غير از هوشمندی انسان) اكنون از زمينههای كاملاً پرطرفدار در هوش مصنوعی است.
الگوريتم ژنيتك كه با استفاده از ايده تكامل داروينی و انتخاب طبيعی پيشنهاد شده روش بسيار خوبی برای يافتن پاسخ به مسائل بهينه سازيست. به همين ترتيب روشهای ديگری نيز مانند استراتژیهای تكاملی نيز(EvolutionaryAlgorithms)در اين زمينه پيشنهاد شده اند.
دراين زمينه هر گوشهای از سازو كار طبيعت كه پاسخ بهينهای را برای مسائل يافته است مورد پژوهش قرار میگيرد. زمينههايی چون سيستم امنيتی بدن انسان (Immun System) كه در آن بيشمار الگوی ويروسهای مهاجم به صورتی هوشمندانه ذخيره میشوند و يا روش پيدا كردن كوتاهترين راه به منابع غذا توسط مورچگان (Ant Colony) همگی بيانگر گوشههايی از هوشمندی بيولوژيك هستند.
گرايش ديگر هوش مصنوعی بيشتر بر مدل سازی اعمال شناختی تاُكيد دارد (مدل سازی نمادين يا سمبوليك) اين گرايش چندان خود را به قابليت تعمق بيولوژيك سيستمهای ارائه شده مقيد نمیكند.
CASE-BASED REASONING يكی از گرايشهای فعال در اين شاخه میباشد. بعنوان مثال روند استدلال توسط يك پزشك هنگام تشخيص يك بيماری كاملاً شبيه به CBR است به اين ترتيب كه پزشك در ذهن خود تعداد بسيار زيادی از شواهد بيماریهای شناخته شده را دارد و تنها بايد مشاهدات خود را با نمونههای موجود در ذهن خويش تطبيق داده، شبيهترين نمونه را به عنوان بيماری بيابد.
به اين ترتيب مشخصات، نيازمندیها و توانايیهای CBR به عنوان يك چارچوب كلی پژوهش در هوش مصنوعی مورد توجه قرارگرفته است.
البته هنگامی كه از گرايشهای آينده سخن میگوييم، هرگز نبايد از گرايشهای تركيبی غفلت كنيم. گرايشهايی كه خود را به حركت در چارچوب شناختی يا بيولوژيك يا منطقی محدود نكرده و به تركيبی از آنها میانديشند. شايد بتوان پيشبينی كرد كه چنين گرايشهايی فرا ساختارهای (Meta –Structure) روانی را براساس عناصر ساده بيولوژيك بنا خواهند كرد.[2]

یاد گیری ماشین
اگر ما AI را بدین صورت تعبیر کنیم که علمی است که به چگونگی دریافت، پردازش، نگهداری و استفاده اطلاعات در هوش انسان و حیوان و ماشین باشد، بطور حتم با زمینه های پژوهشی قدیمیتری مانند روانشناسی، اعصاب و روان، فلسفه و منطق نیز در ارتباط هستیم.
پیشرفت کامپیوترها راههای جدیدی برای حل مشکلات AIدر برابر ما گشوده است. در گذشته روانشناسان و دانشمندان مغز و اعصاب نمیتوانستند سیستمهای پردازش اطلاعات حیوانات و آدمی را آزمایش کنند و فلاسفه فقط میتوانستند تئوریهایی در زمینه چگونگی کارکرد مغز و زبان بدهند. حال آنکه امروزه میتوان فراتر از آنها رفت و سیستمهایی طراحی نمود که تئوریها را مورد آزمایش قرار دهد و صحت و سقم آنها را یافت.
مزايا: هوشمندي واقعي.. قطع وابستگي ماشين ها به برنامه ريزي كامل..توانايي تطبيق با شرايط جديد..
استفاده از تجربه.
تجربه های بدست آمده:
طراحی ماشین با توانایی های خاص خیلی سخت تر از فرضیات اولیه دانشمندان است. خیلی کارها که در ابتدا ساده بنظر
می رسند، موارد دقیق و عمیقی در خود دارند. برای مثال "دیدن" فقط تشخیص اشیا نیست، بیکه شامل ایجاد احساس و درک محیط و درک امن و یا نا امن بودن آن میباشد.
همچنین توانایی فهم زبانی مانند انگلیسی، فرانسه و یا فارسی خیلی پیچیده تر از آن است که محققان فکر کردند. استفاده از زبانهای برنامه نویسی مثل C و C++ و Java نیز خیلی دست و پا گیر است.
ما امروزه میدانیم که حتی افراد کودن هم به مراتب از ماشینهایی که امروزه طراحی شده اند پیشرفته تر و آگاه تر هستند. به هیچ رباتی نمیشود اطمینان داشت که برود و ظروف را از روی میز جمع کند، بشورد و در جاظرفی بچیند و همه این کارها را بدرستی انجام دهد. درحالی که همان افراد کودن هم این کارها را براحتی انجام میدهند.
امروزه این به اثبات رسیده که ماشینها قادر به انجام کارهایی هستند که در ابتدا برای محققان انجام آن توسط ماشینها سخت مینمود مانند حساب کردن و شطرنج بازی کردن. ما امروزه فهمیده ایم که خیلی از کارهای پیچیده انسان و حیوان مانند بالا رفتن از درخت و ساختن آشیانه، هوش بسیار بالا و دانش پیچیده ای نیاز دارد که تئوریهای ما هنوز آنها را پوشش نمی دهند. همچنین درک غرایز حیوانی نیز حتی در میان فلاسفه بسیار مشکل است.[2]
بسیاری از محققین سعی میکنند که موارد فوق را بدرستی درک کنند و برای آنها مکانیسمهایی طراحی کنند. طراحی شبکه های عصبی و مترجمهای چند زبانه راهایی هستند که محققین برای رسیدن به این اهداف بزرگ پی گرفته اند. همچنین محققین در تلاشند روشهایی برای ساختن سیستمهای با مکانیزمی که بتواند انگیزه و احساس را دریافت و درک کند، میباشند.


هوش ازدحامی (Swarm Intelligence) :
نوعی روش هوش مصنوعی است که مبتنی بر رفتارهای جمعی در سامانه‌های نامتمرکز و خودسامانده بنیان شده است. این سامانه‌ها معمولاً از جمعیتی از کنشگران ساده تشکیل شده است که بطور محلی با یکدیگر و با محیط خود در تعامل هستند. با وجود اینکه معمولاً هیچ کنترل تمرکزیافته‌ای، چگونگی رفتار کنش‌گران را به آنها تحمیل نمی‌کند، تعاملات محلی آنها به پیدایش رفتاری عمومی می‌انجامد. مثال‌هایی از چنین سیستم‌های را می‌توان در طبیعت مشاهده کرد؛ گروههای مورچه‌ها، دستهٔ پرندگان، گله‌های حیوانات، تجمعات باکتری‌ها و گله‌های ماهی‌ها.
به احتمال، موفق‌ترین روش‌های هوش مصنوعی ازدحامی که تاکنون بوجود آمده است،روش بهینه‌سازی گروه مورچه‌ها (ACO) و روش بهینه‌سازی ازدحام ذرات (PSO) هستند. روش ACO، نوعی روش فرااکتشافی است که برای یافتن راه‌حل‌های تقریبی برای مسائل بهینه‌سازی ترکیبیاتی مناسب است (از دیگر مثال‌های روش‌های فرااکتشافی می‌‌توان به روش شبیه‌سازی کوره‌ای، روش جستجوی مبتنی بر منع، روش محاسبات تکاملی و دیگر روش‌ها اشاره نمود).
در روش ACO، مورچه‌های مصنوعی به‌وسیله‌ٔ حرکت بر روی گرافِ مساله و با باقی گذاشتن نشانه‌هایی بر روی گراف، همچون مورچه‌های واقعی که در مسیر حرکت خود نشانه‌های باقی می‌‌گذارند، باعث می‌شوند که مورچه‌های مصنوعی بعدی بتوانند راه‌حل‌های بهتری را برای مساله فراهم نمایند.
روش PSO یک روش سراسری کمینه‌سازی است که با استفاده از آن می‌توان با مسائلی که جواب آنها یکنقطه یا سطح در فضای n بعدی می‌‌باشد، برخورد نمود. در اینچنین فضایی، فرضیاتی مطرح می‌شود و یکسرعت ابتدایی به آنها اختصاص داده می‌‌شود، همچنین کانال‌های ارتباطی بین ذرات درنظر گرفته می‌‌شود. سپس این ذرات در فضای پاسخ حرکت می‌کنند، و نتایج حاصله بر مبنای یک «ملاک شایستگی» پس از هر بازه‌ٔ زمانی محاسبه می‌شود. با گذشت زمان، ذرات به سمت ذراتی که دارای ملاک شایستگی بالاتری هستند و در گروه ارتباطی یکسانی قرار دارند، شتاب می‌گیرند. مزیت اصلی این روش بر استراتژی‌های کمینه‌سازی دیگر این است که، تعداد فراوان ذرات ازدحام کننده، باعث انعطاف روش در برابر مشکل پاسخ کمینه‌ٔ محلی می‌گردد.
روباتیک ازدحامی، کاربردی از اصول هوش مصنوعی ازدحامی در تعداد زیادی از روبات‌های ارزان قیمت است.[2]


منابع
[1] جعفر تژاد قمی عین الله, هوش مصنوعی رهیافتی نوین,نشر علوم رایانه,چاپ هفتم,تهران,1381
[2] [You must be registered and logged in to see this link.]
[3] [You must be registered and logged in to see this link.]
[4] [You must be registered and logged in to see this link.]








[b] 👅
Back to top Go down
 
هوش مصنوعی (Artificial Intelligence) چیست ؟
Back to top 
Page 1 of 1
 Similar topics
-
» گروه هوش مصنوعی
» پروژه های درسی هوش مصنوعی
» کارنامه و درصدهای رتبه ۳۹۷ رشته مهندسی کامپیوتر- هوش مصنوعی ارشد۸۸

Permissions in this forum:You cannot reply to topics in this forum
خيام :: کنکور ارشد :: هوش مصنوعي :: كنكور هوش مصنوعي-
Jump to: